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INTRODUCTION

As iong as man has built composite structures, the joints con-

necting various parts have posed a limit to structural strength. This

has been true of stitched. riveted or welded joints and is no less true

of bondings with polymeric solids. Indeed composite raterials

depend to a verb large extent on the strength of the bond connecting

the various phases of the composite solid such as finer reinforced

plastics. -ispbalt concrete and solid propellant rocket fuel.

With regard to structural assembly of, say, aircraft compo-

nents bonding offers advantages through possible advantages in

manufacturing ease and weight saving, while the use of composite

materials makes structural bonding ::incest mandatory because

mechanical fasteners carry with them stress concentrations as

sites of failure initiation. While the problem of bonding two fiber

composite panels is directly dependent on the adhesion of :he 	 }

polymer matrix to the fibers and not only on the narrow region

associa ,-ed with the necessary "bond-line" joining the two panels,

the following development will. nevertheless, add to understanding

some salient features of that problem.

Specifically, we shall be concerned with the problem o_

time dep endent failures of elastic or viscoelastic sclids jointed

by a polymeric bonding layer.	 I,

Like all other problems of strength, the bond strength has

its origin in attractive forces between atoms or molecules. Much

work has been done on this molecular aspect of bond strength as

weU as its relation to the surface tension of the bonding agent.

Indeed so much work has been done in this regard that a few
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references cannot do justice to the depth of understanding that has

been developed from this viewpoint [ 1 I.
It is our aim in this work to steer away from molecular

concepts and to treat the problem of adhesion on a size scale which

is large compared to molecular dimensions. We may thus deal

either with the microscopic scale on the order of surface rough-

ness ( 2 ] or with tae much larger scale of a complete joint [ 3 ].

From the star_dpoint of continuum mechanica the treatment

of the problem at the microscopic or macroscopic level is not dif-

ferent. What is different, however, is the interpretation of at

least one material property which we shall call, for lack of a bet-

ter term at present. the fracture energy. Microscopically, we may

view bond failure as originating from a small region which was not

wetted by the bonding agent due to surface roughness. This region

may be on the order of the surface roughness in size. The fracture

may now occur into one of the weaker, joined materials, into the

bonding solid or along an interface*. In either case we would

conceive of the fracture energy as the work done in breaking inter-

atomic bonds. This is a quantity which can therefore be calculated

in principle from molecular considerations.

Macroscopically, i. e. , on the size scale of a technical

joint, we may have to consider the fracture energy as an average

quantity determined by what !append microscopically near the

small flaws at the interface. In other words the macroscopic

fracture energy includes the little stress concentrations due to the

ik
We shall consider the criterion as to where the fracture occurs
later on.
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microgeometry of the rough surface and the intrinsic properties of

the joined materials at the microscopic level.

The choice of which viewpoint one wishes to take depends cii

the application one has in mind. If one is interested in studying how

different material properties of the adherents and the bonding agents

interact to form stronger bonds, one would probably be concerned

primarily with the microscopic dimension. On the other hand, if one

is in need of determining the effect of loading on a macroscopic joint

such as is often the case in aircraft design, one would favor the

macroscopic approach and determine the gross fracture energy in a

suitably designed test. Comments in this regard are in order again

after the details of the development have been presented.

As our immediate goal we sliall apply the principles of fracture

in viscoelastic materials to the failure of bond systems involving visc_-

elastic or elastic adherents and a viscoelastic bonding agent. Little

attention has been given to joint failure from the viewpoint of fracture

mechanics. Treatments presumably available in the literature 3,4

emphasize the macroscopic aspects of technical joints without attention

being given to the multiplicity of failure pheonomea that may occur.

In particu'_ar, time and temperature dependence of the joint fracture

process have not been discussed extensively. Our emphasis will

therefore be on those aspects of the problem which add to our under-

standing of joint failure, on the one hand, in relation to micro-

scopic process, and on the other hand, in relation to the macroscopic

stress fields acting on the joint system.
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In most practical situations one is faced with one of two cases.

On the one hand one may wish to join hard viscoelastic (elastic)

solids by a hard, polymeric bonding material produce a high strength

joint such as in aircraft construction or fiber composites. On the

other hand one may need to join soft rubbery components to produce a

highly compliant bond system to support relatively small loads. The

bonding of solid propellant rocket fuel to the rocket casing is an

example in point. in either case the full spectrum of vibcoelastic

relaxation times is not likely to be invoked as far as the analyses of

stresses are concerned and one may therefore be able to deal with

approximations in viscoelastic stress analysis. It should be pointed

out, however, that such simplifications are a matter of convenience

and not one of necessity or principle.



STRESS ANALYSIS OF IMPERFECT BONDS

Bonds, like homogeneous solids fail because invariably present

flaws cause load variations of the stresb field to irduce crack growth.

If one accepts the pre-existence of crack-like flaws the p.-oblem of

.`ail-are determination is "reduced" to determining the condition(s)

undrr which such a flaw will enlarge. In general it will also be

necessary to establish the rate at which the flaw growth occurs. It is

quite easy to demonstrate that when viscoelasticity is involve: growth

may occur so slowly that the joint will per;orm satisfactorily for the

useful life of the total structure. For the purpose of joint life

prediction it is tneref.ore very important to establish the growth

i	 history of a flaw as a function of the applied loading sequence.

From the viewpoint of fracture mechanics the first step in

understanding the flaw instability condition is to understand the

stresses in the vicinity of such flaws. We have previously dis-

cussed f 5 the variety of flaws that may exist in materials and

how quanitative mathematical descriptions require one to suitably

model such flaws. The same applies to flaws rear or at inter-

F aces. Let us assume for the sake of brevity and convenience

that these flaws are sharp cornered and crack-like. Suppose

further for the moment that the flaw is situated at an interface

between two solids which possess distinctly different material

properties (ci. Figure 1). Classical (visco)elasticity theory

predicts that the stresses at the edge or rp of the flaw become

infinitely large and oscillate from tension to compression with

increasing frequency as the crack front is approached from within
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either material [ 6, 7 ] . Along with this alteration in stresses

appears an alternation of the crack-opening displacement such that
E

portions of the supp,_ redly stress free crack surface interpenetrate.

This theoretical behavior is physically not reaketic and remains

unexplained by classical elasticity. Muskhelishvili points out, how-

ever, that this result extends over such a small distance in the

crack vicinity that it is of no practical consequence. Furthermore,

the unreasonable behavior vanishes if the joined materials are

incompressible or if they have the same properties. The latter case

identifies the crack as being imbedded in a continuum.

It has been shown elsewhere [ 7, 8 ] that the stresses ahead

of the tip of a taro-dimensional crack can be written as

sy = [ZRx]- K 1 cos (81n	 - K z sin `61nH
TX

 + 0(1)

T = [Zax;	 K1 ain CSin	 ^ + K2 Cos^E^Lz	 )00%+ 0 	 (1)
xY	 ` 

6	 =	 I	 In µI + 
µt

+ Iµ 2 µ l x2

where the notation is consistent with Figure 1. The subscripts refer

to m.-terials "one" and "two" respectively and

µ = shear modulus

r, = 3-4v

and the K  are called the stress intensity factors.
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For the single flaw at the interface between two infinite

solids under crack-parallel shear q and under uniform tension p

normal to the crack one finds, e.g. , that [ 8

K I =^ r _C_ [p + 28 q;

(2)

K 2
=^

	 [28p q]

W e note further that when v 1 = v2 = 1/2 ( incompressible solids) that

P - 0 and therefore in this special case the stress (and displacement)

oscillations vanish ant i one obtains, as for a crack in a homogeneous

solid

vy = [ 2w x ]_ ` K I

TxY= [ 2nx^ -^ K2

	 (3;

In our further discussions we shall ignore the anomalous behavior of

stress oscillations or assume incompressible material response when

applicable.

Having dispensed with an apparently mathematical quirk in

stress analysis we turn now to a physical observation in joint fracture

for which adequate mathematical analyses are not available, altnw gh

the tools for such analysis eid6t. It is a common observation that if a

cracked sheet is not subjected to loads normal to the crack. the latter

will not propagate along i ts original axis but at some angle Y

(cf. Figure 2a). The same is true for cracks at an interface between

two solids. For brittle or poorly ductile materia ls it is believed [ 9 3
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that cracks will extend along a line which is normal to the direction of

the locally maximum tensile stress (cf. Figure 2). Since a like

criterion should apply to cracks in the vicinity of bonds, we find that

a crack situated, say, at the interface will tinder general loading tend

to propagate away from the interface into one or the other of the joined

solids. As to whether the crack can propagate under this condition

depends on the strength characteristics* of the material into which

the crack wants to propagate. If two joined materials have

significantly different strength properties it is conceivable that if the

bond line containing a small crack is subjected to a shear stress of,

say, magnitude T O the crack will not propagate. However, if the

smear stress were reversed in direction while maintaining its

magnitude T  cur.stant the crack would propagate into the other

material (:.f. Figure 3). This fact can also be easily demonstrated

experimentally.

It should be borne in mind in this context that we are

considering the propagation of a small crack in the vicinity of two

different, reiatively large solids. The consequences of the pre-

seeding observation with regard .o technical ,joints involving three

separate solids (cf. Figure 4) are three-fold. First, the argu-

rnent as to whether the crack will tend to propagate into one or the

other material still holds. Therefore, the type of applied load,

tensile, shear or a combination, still determines the gross strength

characteristics of a composite '7ond system. Second, the failure

We will identify these strength characteristics quantitatively later.
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characteristics are different if bond failure occurs as the result of a

single crack propagating or as the result of many flaws which grow

until they interact to form a large one. For a single crack the

change of loading conditions will have a more pronounced effect than

for multiple flaws, the individual responses of which are somehow

averaged out • o produce the final, gross failure. Third, the change

of the geometry -- switching from two solids of Figure 3 to the three

solids in Figure ti -- r -tilts in pronounced changed of the stress field

at the tip of any crack :ii the bond -Acinity. Let us illustrate this

statement by one particular example, referring for a more detailed

discussion to the literature (10, 11, 12]. Consider a single crack in

the three-body and two-material composite in Figure S. which contains

a central crack in the bonding agent so that c>h. It can be shown

rigorously [10, 11 ] that if the Young's modulus of the material "1"

is much larger than that of the bonding agent "2" then the stresses

at the crack tip are proportional to the applied stress QQ and to the

square root of the bond half thickness h. On the other hand, if the

elastic properties of materials "1" and "2" are (nearly) the same,

then the local crack tip stresses are still proportional to the stress a,
0

but now proportional to the square loot of the crack half length c. We

see that the material properties have a pronounced effect on the stresses

at the crack tip and consequently can have a strong effect on the

failure behavior of bonded solids.

Let us summarize this qualitative. description of the crack

propaga tion at or near joints by observing that crack growth is

controlled by the stresses at the tip of the crack. These stresses in

turn are controlled by both the applied loads as well as the material

4



properties of all the surrounding materials. Furthermore the failure

of technical joints depends on whether failure is caused by a

progresbion of a single crack cr by the interaction of many cracks

growing simultaneousl y. In short, there are many parameters which

control the failure of joints,



EQUATION GOVERNING TIME-DEPENDENT FRACTURE

The theory for fracture growth in (linearly) viscoelastic

continua has been cucumented in references [5, 13-16L It suf-

fices for our present purpoces to review the principles involved

and to state the result.

When a crack propagates the high stresses at a point just

ahead of the crack tip have to unload to zero a-- the crack tip pas-

ses that point -- provided the _rack surfaces are stress free and

not pressurized. This unloading process is the result of the

material disintegration at the crack tip through void formation 51;

the latter process may vary with regard to size scale, sometimes

visible with the unaided eye, and sometimes only under high

magnification. The r,et result of this process is that the unloading

forces at the crack tip do work while acting through the displace-

ments of the newly created crack su: taces. if the region ahead of

the crack over which material disintegration takes place is very

small, then it can be shown r 13, 151 that the work done by the

unloading stresses at the crack tip is equal to the work required

to break the molecular bonds ahead of the crack, Because the

stresses 7 nd displacements at the tip of a crack are, in general,

time dependent and also . function of the crack tin velocity,

the relation of tire: dependent loading and resultant time depended

crack proragation are implicitly accounted for.

In reference 16 we have derived the general equation for

crack growth. For the limited case that loads on a fracturing
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structure do not change in a sudden fashion* the mathematical

equation describing the physical fracture p-ocess dust outlined is

D( r-) K 2 lc(t),t ; _c

where

D(t)	 = creep compliance of the homogeneous solid

a	 = small length over whi^h material disintegration
takes place, a microstnictural paraineter; see
below

C. d	 = crack size and crack tip velocity, both functions
of time

r	 = intr:nsi,:, constant 	 energy

Krc,t] = crack tip stress intensity factor

Before proceeding to the application of viscoelastic fracture theory to

the failure of joints a comment is in order with respect to the effect

of the detai l ed stress distribution at the tip of the crack. We recall

that a fundamental ingredient to equation (5) is the work done by the

forces at the crack tip during the unloading process. This process

occ-ars over the small distance	 The total work is tlLus an integral

over the distanca a ahead of the crack and it is the integral of the

stress and displacement distribution which enter3 equation (1).

lnasrr:uch as the integral smooths out detailr- of the stress and dis-

placement distribution an approximation may be quite acceptable--

as long as the approximate stress ana the displacement fields are

compatible in the sense of viscoelastic stress analysis.

a	 der « ' ; (,see reference 16)

(4)
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EQUATION GOVERNING TIME-DEPENDENT JOINT FRACTURE

We shall not here derive the equation equivalent to (5) for

joint fracture but deduce it from existing results. For this purpose

it iz ^_^^venient to assume, for the present, that fracture occurs

a:ong an interface. We note further that for an elastic solid instead

of a viscoelastic one equation (4) reduces to

EhZ (c) = r
	

(5)

where the elastic compliance 1/E has replaced the creep compliance

D(t4 in accordance with Griffith's result. Alternately, we can look

upon the •riscoelastic equatio . i (4) as a geT ► eraliaation of the elastic

result (5).

Idossakovskii and Rybk^ L :11 have given the instability

c riterion for two elastic solids urbonded in a circular region and

under tension nor-mal to the interface. For the s pecial case of

incompressible elastic solids their result becomes particulany

simple, namely,

[
--- + E 	K7 [c. E  E L F = I'	 (b)

1	 2

where E I and E  are the Yoo,ing 6 s moduli for the two M.ateria's

joined and I' is the energy r+:quired to f )rm a unit of new surface.

We notice that the major difference in the fracture and the joint

problern is that the average elastic compliance of the joint problem

has replaced the single compliance of the fracture equation (5).

13



We deduce that equation (6) can be generalized for the viscoelastic

case as (5) can be generalized into ( 4). We find therefore, that if

two poorly compressible viscoelastic solids are jo*Aned the rate of

unbonding ^ is given by

j•[D l (- -) + D2 (^)^K 2 [c, 1,2 ]= r	 (7)

where D l and D 2 are the creep compliance of the two joined solids.

The fact that the stress intensity factor K depends, in general, on

the material properties of the two solids is expreesed by the numerals

1 and 2 in the argument of K. This generalization is also summarized

in Figure 6. Note that the time-dependent description (7) of the joint

fracture specializes to the time-dependent fracture of a homogeneous

continuum and to the elastic cases.

I

i
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ILLUSTRATION OF TIME-DEPENDENT EFFECTS AND TRANSITION
FRACTUREFP .OM, AMMIVE TO COHESIVE 

Consider two viscoelastic solids bonded together imperfectly;

let their time-dependent oehavior be characterized by the creep

compliances as shown in Figure 7. Assuming, again for reasons of

simplicity in presentation the applied loading to be such that unbonding

occurs along the interface*, we can use equation (7) to calculate the

rate of unbonding 6 as a function of the parameter K/,,Trp% This

relation is shown in Fig. 8. Since the stress intensity factor K is

proportional to the magnitude of the applied load we see an increase in

load will bring about a much more than proportional increase in rate

of unbonding. This fact may be illustrated also in a more conventional

way by asking how much 'time At is required for the unbond to grow

by a small, but detectible amount Ac. If the growtn is so small that

the stress intensity factor is not markedly affected, then we need not

integrate the differential equation (7) but use the approximate relation

Ot i

The result of such a calculation as derived frorr. Figure 8 is shown in

Figure 9 as the solid line, which is, upon noticing the proportionality

between loan and stresb intensity factor K, a plot of how the applied

load controls the failure tune.

Two general observations should be made at this point. First

we note that the abscissa contains the f racture energy T. This

fracture energy which can be related to the molecular hr Aiij

process is a direct measure of the joint strength. Assume we -wish

We shall subsequently deal with cases tha. deviate from this condition.



failure to occur at (or after) some -particular time t  (cf. Figure 9). If

we increase t, then K and therefore the applied load must be

increased to achieve failure in the same time. Alternately, merely

increasing I' will increase the failure times At for comparative

loads (K). Note, that a relatively small increase in 71  will cause a

large change in the failure time. To speak of a stro_ger joint vve must

thus be aware that "stronger" can mean either a higher load at

comparative timescale or longer failure times at comparative

stress levels.

Second, we note thlt the timescaie on Figure 9, which is

typical for polymeric solids, is so large that only a portion of the

whole abscissa would be observed in a laboratory. However, it is

well known that polymers respond to temperature changes with a

change in response time [ 18	 It follows from the thermorehological

behavior. whether this behavior be simple or not, that an increase in

temperature ahifts the failure time curve Lo the left, leading to

apparent weakening, while the opposite is true for temperature

lowering. This fact has been observed experimentally by Wegman

and Tanner [19].

Finally we must remark that we have considered in Figure 9

only the simplest explicit time-dependence of this jointed failure

inasmuch as we have calculated only • he time to propagate the crack

some small (unspecified) distance. Joint failure is the result of

It should be ►emembered that temperature variations set up thermal
stresses in joined materials having different thermal expansion
properties. These thermal stresses will produce a cuntribution to
the stress intensity factors which in turn wi_11 affect the failure time.
Although thermal stresses are very important for determining joint
integrity we wish to apeak here only of the thermorheological
material properties.



substantial crack growth which can be calculated by integrating the

non-linear differential equation ( 7 ) after the stress intensity

factor K is known as a !unction of the current flaw size c(t). The

latter determination is irnportant because it combines the effect of

loading and geometry to determine whether the crack accelerates

[ S. 151 or propagates at a steady. possibly slow speed [ 13 ].
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INFLUENCE OF THE FRACTURE PATH ON JOINT STRENGTH

Having illuminated exclusively the time-dependence of the joint

failure process for the speical case of interface separation we should

free ourselves from that restriction and consider the conseq uences in

terms of the unbondinq equation ( 7 ). Let us denote the properties

of the two joined solids by the numerals "1" and "t" and the property

of the interface by "3".

Basically two conditions influence the propagation of a crack.

First, the magnitudes of the fracture energy of the material through

which the crack p-opagates is significant. Second, often combined

sets of forcers act on the crack tip such that one set tends to open the

crack and the other tends to cause shear along the crack suriTces. If

such a combination is just sufficient to cause crack growth -- or to

cause crack growth at some rate A. -- then anyone of the two sets

of forces by themselves will not be sufficient to cause failure -- or

it will cause growth at a lover rate. This fact is implicit in the

results fow.d by Eriogan and Sih [ 9 1. We must therefore

consider the path or direction of fracture in addition to its rate

of propagation. Cor_sider Figure 10a. L we assume that the

separation occurs at the interface's then ecuation ( T) applies directly

as we had aasunned earlier, except that now we should add a subscript

3 on to I'. we have then

From a practical viewpoint this is undesirable because it indicates
that full advantage of the strength properties of the adherents has
not been exploited.

1
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' (D
, (,a) + Dl ('-)I K 2 = r3	 (8)

Now suppose that i' 3 >T" l and further !hat the stress intensity factor

does not change if the crack is situated an infinitesimal amount c

away from the interface into material 1 (cf. Figure 10b). Equation (7)

reads now

D1 (-C) + D2 ( c^ ) l K^	 rl
	 (9)

It i s ea_iy to show that under the condition 1'3> T'I the velocity of crack

growth t as calculated from equation ( 9) will exceed that calculated

from equation ( 8). It would seem reasonable therefore that the crack

will follow the path ; -i material I.

Nex• let ^s consider what happens =.f the loading is such that the

crack propagates towards the bond line ( Figure 10c) and let i2>I'>1'

We first observe that to bring about the change to go from the case of

Figure 10b to that of Figure 10c we hat! to add some load in accordance

wi th the eecond of the conditions discussed at the beginning of this

section. Second, upon meeting the interface the crack may not possess

a stress intensity factor high enough to satisfy the equation

D 1 (-^-) +	 ()^K 2 = Ti	 (10)
1

but may be high enough to satisfy the equations

D 1 (	 + D2t) K2 = r3'	 (11)

Accordingly the crack will propagate along the interface but not into

the adherent 2. Of course a condition can be found on the load such

that the crack will not propagate at all but be stopped by the second

adherent.



Finally. let us consider more explicitly the effect of rate of

unbonding upon the transition between adhesive and cohesive failure

of a simple structural joint. Figure 11 shows such an idealized

arrangement of a viscoelastic solid bonded to a rigid substate by a

viscoeiastic bonding agent. Since we have already treated the

1	 condition which determines whether the fracture will propagate in

the adhesive or along the interface we will now have to consider

only the condition undo r which failure occurs at or near the interfaces

3 or 4.

If unbonding occurs at the interface 3 then tht gnvermng

equation is

2 [D l (") + ll 2 ^ K2 [1:2; c(t)3 = r3	 (13)

while the corresponding equation for unbonding the interlace 4 is

D2(^) K2 L 1; 2; c(t) _ :4	 (14)

We presume for the present that the small structural parameter C is the

same for both interfaces, a condition which can later be relaxed at the

expense of introducing another variable into the problem.

With the restrictive understandii ,g that flaws at either inter-

face are to give rise to approximately equal stress intensity factors

we may now consider these cases as illustrated in Figure 12. There

we nave plotted the rate of bond destruction for three different sets

of adhesive fracture energy valueb the dotted curves corresponding

to unbonding of the rigid solid while the solid curve describes the

separation of the two viscoelaatic solids along interface 3. It is

I	
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clear from Figure 12 a and 12c that preferential unbonding will

occur under all leading conditions at one or the other interface

if the separation energies are dieincity different. However, if

the separation energies are nearly equal (cf. Figure 12b) then

unbonding can occur along either interface depending on how

high the stress intensity factor is. In other wordb, unbonding can

occur on either interface depending on how hard one pulls on _he

assembly. This deduction may also be the reason for the ooserv-rd

phenomenon [ 20] that certain systems peel cleanly at a given rate

(given force) while a complex or intrabond failure is observed for

higher peel rates (higher peel forces#.

We may now relax the condition that the structural size

parameter be the same for both interfaces and demonstrate as an

example the effect of a larger parameter for the rigid-polymer

interface 4. This is illustrated qualitatively in Figures 12 d-f,

again for the three relative values of the separation energies r3

and 1'4. We see in Figure 12d that although i3 > I'4 , the failure

may charge from unbonding at the interface 3 to debonding the

interface 4 depending on the stress level,

21



CONCLUDING REMARKS

We have attempted to elucidate the time or rate dependent

fracture of adhesive joints from the viewpoint of viscoelastic

fracture mechanics. No phenomena, not hitherto observed experi-

mentally, are reported. No further assurance is given that the

problem of bonding is a technical trivial problem and the chemistry

of surface preparation has been avoided.

However, we have attempted to elucidate, on the basis of a

few principles of fracture mechanics, a variety of observed

phenomena. Thus the hope exists that the large variety a. ,. apparent

physical phenomena can be reduced by viewing them from the

umbrella viewpoint or fracture mechanics.

I	
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